

1 / 23 Chainsulting Audit Report © 2020

1Inch Exchange Contracts

 SMART CONTRACT AUDIT
04.11.2020

Made in Germany by Chainsulting.de

2 / 23 Chainsulting Audit Report © 2020

Table of contents

1. Disclaimer .. 3
2. About the Project and Company ... 4

2.1 Project Overview .. 5
3. Vulnerability & Risk Level ... 6
4. Auditing Strategy and Techniques Applied .. 7

4.1 Methodology ... 7
4.2 Used Code from other Frameworks/Smart Contracts ... 8

4.3 Tested Contract Files .. 9
5. Scope of Work & Results .. 10

5.1 Manual and Automated Vulnerability Test ... 11
5.1.2 Missing natspec documentation ... 12
5.1.1 Hardcoded address .. 12
5.1.3 A floating pragma is set ... 13
5.2. SWC Attacks ... 14
5.3. Special Checks ... 18
5.3.1 Function: Approvals ... 18

5.3.2 Function: Swap ... 18
5.3.3 Function: Rescue Funds ... 20
5.3.4 Function: Pause .. 21

6. Executive Summary ... 22
7. Deployed Smart Contract ... 23

3 / 23 Chainsulting Audit Report © 2020

1. Disclaimer

The audit makes no statements or warrantees about utility of the code, safety of the code, suitability of the business model, investment
advice, endorsement of the platform or its products, regulatory regime for the business model, or any other statements about fitness of
the contracts to purpose, or their bug free status. The audit documentation is for discussion purposes only.

The information presented in this report is confidential and privileged. If you are reading this report, you agree to keep it confidential,
not to copy, disclose or disseminate without the agreement of 1Inch Exchange. If you are not the intended receptor of this document,
remember that any disclosure, copying or dissemination of it is forbidden.

Major Versions / Date Description
0.1 (29.10.2020) Layout
0.5 (30.10.2020) Automated Security Testing

Manual Security Testing
0.8 (30.10.2020) Adding of SWC, Special Checks
1.0 (31.10.2020) Summary and Recommendation
2.0 (01.11.2020) Final document
2.1 (04.11.2020) Mainnet release

4 / 23 Chainsulting Audit Report © 2020

2. About the Project and Company

Company address:

1Inch Limited
Quijano Chambers, P.O. Box 3159, Road Town
Tortola, British Virgin Islands

Sergej Kunz Co-Founder & Chief Executive Officer
Anton Bukov Co-Founder & Chief Technology Officer

Website: https://1inch.exchange/

GitHub: https://github.com/CryptoManiacsZone

Twitter: https://twitter.com/1inchExchange

Discord: https://discord.gg/FZADkCZ

Youtube: https://www.youtube.com/channel/UCk0nvK4bHpteQXZKv7lkq5w

Medium: https://medium.com/@1inch.exchange

5 / 23 Chainsulting Audit Report © 2020

2.1 Project Overview

Launched in Mar 2019, 1inch is a DeFi aggregator and a decentralized exchange with smart routing. The core protocol connects a large
number of decentralized and centralized platforms in order to minimize price slippage and find the optimal trade for the users. 1inch
platform provides a variety of features in addition to swaps. Users can trade via limit orders, deposit funds into lending protocols, move coins
between different liquidity pools, and this list expands constantly.

6 / 23 Chainsulting Audit Report © 2020

3. Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit vulnerability, and the impact of that event on the organization or
system. Risk Level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)
Critical 9 – 10 A vulnerability that can

disrupt the contract
functioning in a number of
scenarios, or creates a risk
that the contract may be
broken.

Immediate action to reduce risk level.

Major 7 – 8.9 A vulnerability that affects
the desired outcome when
using a contract, or
provides the opportunity to
use a contract in an
unintended way.

Implementation of corrective actions as soon as
possible.

Medium 4 – 6.9 A vulnerability that could
affect the desired outcome
of executing the contract in
a specific scenario.

Implementation of corrective actions in a certain
period.

Minor 2 – 3.9 A vulnerability that does
not have a significant
impact on possible
scenarios for the use of the
contract and is probably
subjective.

Implementation of certain corrective actions or
accepting the
risk.

Informational 0 – 1.9 A vulnerability that have
informational character but
is not effecting any of the
code.

An observation that does not determine a level of
risk

7 / 23 Chainsulting Audit Report © 2020

4. Auditing Strategy and Techniques Applied

Throughout the review process, care was taken to evaluate the repository for security-related issues, code quality, and adherence to
specification and best practices. To do so, reviewed line-by-line by our team of expert pentesters and smart contract developers,
documenting any issues as there were discovered.

4.1 Methodology

The auditing process follows a routine series of steps:

1. Code review that includes the following:
i. Review of the specifications, sources, and instructions provided to Chainsulting to make sure we understand the size,

scope, and functionality of the smart contract.
ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential

vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources,

and instructions provided to Chainsulting describe.
2. Testing and automated analysis that includes the following:

i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and
how much code is exercised when we run those test cases.

ii. Symbolic execution, which is analysing a program to determine what inputs causes each part of a program to execute.
3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability,

security, and control based on the established industry and academic practices, recommendations, and research.
4. Specific, itemized, actionable recommendations to help you take steps to secure your smart contracts.

8 / 23 Chainsulting Audit Report © 2020

4.2 Used Code from other Frameworks/Smart Contracts
1. SafeMath.sol (0.6.2)
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol
2. IERC20.sol (0.6.2)
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/IERC20.sol
3. Ownable.sol (0.6.2)
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
4. Pausable.sol (0.6.2)
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/lifecycle/Pausable.sol
5. SafeERC20.sol (0.6.2)
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol
6. Context.sol (0.6.2)
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/GSN/Context.sol
7. Address.sol (0.6.2)
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Address.sol

9 / 23 Chainsulting Audit Report © 2020

4.3 Tested Contract Files

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or
otherwise, after the security review. You are cautioned that a different SHA-256 hash could be (but is not necessarily) an indication of
a changed condition or potential vulnerability that was not within the scope of the review

File Fingerprint (SHA256)
OneInchExchange.sol 211fb1df636950467711223fb2bd2d2ee43992a4530e2a84c2fc6f00ecb7d0f4
OneInchFlags.sol 422a9400755e85c7b5e2c1251fca1ff026504405c05b479fa996ce9f967f0443
RevertReasonParser.sol b6e8ab8ea115b09362e93cf7166bdd373ad3dd36a7025a942cc847f7d45c0a18
UniERC20.sol 2c7ceb502077357a0f657217fa4e07d15bd875788af9faaaee3d523bfd852333
IOneInchCaller.sol cfe6318b16502bf14c434a3772e173f0448da36e6327e5d3536435ecad1ac153
IERC20Permit.sol f55d9339af4faee79c555c54bf0c95db434ad0f267d0848f55ae3acfcbc0ce6e
IChi.sol a653c95fe096cb5de522db03a3eda4ca7bcfe3d784031693a99161def26ea5ab

10 / 23 Chainsulting Audit Report © 2020

5. Scope of Work & Results

The 1inch exchange team provided us with the files that needs to be tested. The scope of the audit is OneInchExchange.sol contract with its direct
imports.

OneInchExchange.sol
helpers/RevertReasonParser.sol
helpers/UniERC20.sol
OneInchFlags.sol

Indirect imports:
Interfaces/IOneInchCaller.sol
Interfaces/IERC20Permit.sol
Interfaces/IChi.sol

The rest of the repo was out of scope of the audit

The team put forward the following assumptions regarding the security of the OneInchExchange.sol Audit contract:

• OneInchExchange contract allows to make trades that will be split to different DEXs in complex ways. They want to make sure that users’
approvals on OneInchExchange contract are safe.

• That the function swap itself is safe, i.e. that user spends at most amount of srcToken and receives at least minReturnAmount of dstToken.
• We also want to be able to change the implementations of OneInchCaller freely so it is out of scope of the audit.

The main goal of this audit was to verify these claims. The auditors can provide additional feedback on the code upon the client’s
request.

11 / 23 Chainsulting Audit Report © 2020

5.1 Manual and Automated Vulnerability Test

CRITICAL ISSUES

During the audit, Chainsulting‘s experts found no Critical issues in the code of the smart contract.

MAJOR ISSUES

During the audit, Chainsulting’s experts found no Major issues in the code of the smart contract.

MEDIUM ISSUES

During the audit, Chainsulting’s experts found no Medium issues in the code of the smart contract.

MINOR ISSUES

During the audit, Chainsulting’s experts found no Minor issues in the code of the smart contract.

12 / 23 Chainsulting Audit Report © 2020

INFORMATIONAL ISSUES

5.1.2 Missing natspec documentation
Severity: INFORMATIONAL
File(s) affected: all

Attack / Description Code Snippet Result/Recommendation
Solidity contracts can use a
special form of comments to
provide rich documentation for
functions, return variables and
more. This special form is
named the Ethereum Natural
Language Specification Format
(NatSpec).

NA

It is recommended to include natspec
documentation and follow the doxygen style
including @author, @title, @notice, @dev, @param,
@return and make it easier to review and
understand your smart contract.

5.1.1 Hardcoded address
Severity: INFORMATIONAL
File(s) affected: helpers/UniERC20.sol

Attack / Description Code Snippet Result/Recommendation
The contract contains unknown
address. This address might
be used for some malicious
activity. Please check
hardcoded address and it's
usage.

Line: 14
IERC20 private constant _ETH_ADDRESS =
IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);

The specific address was picked since it’s easy to
remember and highly unlikely to collide with a real
address. Not effecting the overall contract
functionality.

13 / 23 Chainsulting Audit Report © 2020

5.1.3 A floating pragma is set
Severity: INFORMATIONAL
Code: SWC-103
File(s) affected: all

Attack / Description Code Snippet Result/Recommendation
The current pragma Solidity
directive is ^0.6.12;
It is recommended to specify a
fixed compiler version to
ensure that the bytecode
produced does not vary
between builds. This is
especially important if you rely
on bytecode-level verification
of the code.

Line: 1
pragma solidity ^0.6.12;

It is recommended to follow the example (0.6.12), as
future compiler versions may handle certain
language constructions in a way the developer did
not foresee. Not effecting the overall contract
functionality.

14 / 23 Chainsulting Audit Report © 2020

5.2. SWC Attacks

ID Title Relationships
Test

Result

SWC-131	

Presence	of	unused	variables	
CWE-1164:	Irrelevant	Code	 • ✅"#$ 	

SWC-130	

Right-To-Left-Override	control	
character	(U+202E)	

CWE-451:	User	Interface	(UI)	Misrepresentation	of	Critical	Information	 • ✅"#$ 	

SWC-129	

Typographical	Error	
CWE-480:	Use	of	Incorrect	Operator	 • ✅"#$ 	

SWC-128	

DoS	With	Block	Gas	Limit	
CWE-400:	Uncontrolled	Resource	Consumption	 • ✅"#$ 	

SWC-127	

Arbitrary	Jump	with	Function	
Type	Variable	

CWE-695:	Use	of	Low-Level	Functionality	 • ✅"#$ 	

SWC-125	

Incorrect	Inheritance	Order	
CWE-696:	Incorrect	Behavior	Order	 • ✅"#$ 	

SWC-124	

Write	to	Arbitrary	Storage	
Location	

CWE-123:	Write-what-where	Condition	 • ✅"#$ 	

SWC-123	

Requirement	Violation	
CWE-573:	Improper	Following	of	Specification	by	Caller	 • ✅"#$ 	

15 / 23 Chainsulting Audit Report © 2020

ID Title Relationships
Test

Result

SWC-122	

Lack	of	Proper	Signature	
Verification	

CWE-345:	Insufficient	Verification	of	Data	Authenticity	 ✅"#$ 	

SWC-121	

Missing	Protection	against	
Signature	Replay	Attacks	

CWE-347:	Improper	Verification	of	Cryptographic	Signature	 ✅"#$ 	

SWC-120	

Weak	Sources	of	Randomness	
from	Chain	Attributes	

CWE-330:	Use	of	Insufficiently	Random	Values	 • ✅"#$ 	

SWC-119	

Shadowing	State	Variables	
CWE-710:	Improper	Adherence	to	Coding	Standards	 • ✅"#$ 	

SWC-118	

Incorrect	Constructor	Name	
CWE-665:	Improper	Initialization	 • ✅"#$ 	

SWC-117	

Signature	Malleability	
CWE-347:	Improper	Verification	of	Cryptographic	Signature	 • ✅"#$ 	

SWC-116	

Timestamp	Dependence	
CWE-829:	Inclusion	of	Functionality	from	Untrusted	Control	Sphere	 • ✅"#$ 	

SWC-115	

Authorization	through	tx.origin	
CWE-477:	Use	of	Obsolete	Function	 • ✅"#$ 	

SWC-114	

Transaction	Order	Dependence	 CWE-362:	Concurrent	Execution	using	Shared	Resource	with	Improper	
Synchronization	('Race	Condition')	 • ✅"#$ 	

16 / 23 Chainsulting Audit Report © 2020

ID Title Relationships
Test

Result

SWC-113	

DoS	with	Failed	Call	
CWE-703:	Improper	Check	or	Handling	of	Exceptional	Conditions	 • ✅"#$ 	

SWC-112	

Delegatecall	to	Untrusted	Callee	
CWE-829:	Inclusion	of	Functionality	from	Untrusted	Control	Sphere	 • ✅"#$ 	

SWC-111	

Use	of	Deprecated	Solidity	
Functions	

CWE-477:	Use	of	Obsolete	Function	 • ✅"#$ 	

SWC-110	

Assert	Violation	
CWE-670:	Always-Incorrect	Control	Flow	Implementation	 • ✅"#$ 	

SWC-109	

Uninitialized	Storage	Pointer	
CWE-824:	Access	of	Uninitialized	Pointer	 • ✅"#$ 	

SWC-108	

State	Variable	Default	Visibility	
CWE-710:	Improper	Adherence	to	Coding	Standards	 • ✅"#$ 	

SWC-107	

Reentrancy	
CWE-841:	Improper	Enforcement	of	Behavioral	Workflow	 • ✅"#$ 	

SWC-106	

Unprotected	SELFDESTRUCT	
Instruction	

CWE-284:	Improper	Access	Control	 • ✅"#$ 	

SWC-105	

Unprotected	Ether	Withdrawal	
CWE-284:	Improper	Access	Control	 • ✅"#$ 	

SWC-104	

Unchecked	Call	Return	Value	
CWE-252:	Unchecked	Return	Value	 • ✅"#$ 	

17 / 23 Chainsulting Audit Report © 2020

ID Title Relationships
Test

Result

SWC-103	

Floating	Pragma	
CWE-664:	Improper	Control	of	a	Resource	Through	its	Lifetime	 • ❌&' 	

SWC-102	

Outdated	Compiler	Version	
CWE-937:	Using	Components	with	Known	Vulnerabilities	 • ✅"#$ 	

SWC-101	

Integer	Overflow	and	Underflow	
CWE-682:	Incorrect	Calculation	 • ✅"#$ 	

SWC-100	

Function	Default	Visibility	
CWE-710:	Improper	Adherence	to	Coding	Standards	 • ✅"#$ 	

18 / 23 Chainsulting Audit Report © 2020

5.3. Special Checks

5.3.1 Function: Approvals

Ressources : https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#SafeERC20
Code:
interface ISafeERC20Extension {
 function safeApprove(IERC20 token, address spender, uint256 amount) external;
 function safeTransfer(IERC20 token, address payable target, uint256 amount) external;
}

Result:
The approval functions (safeApprove, safeTransfer) inside the OneInchExchange.sol contract are implemented in the right way and
widely used.

5.3.2 Function: Swap

Code:

//@param srcToken source token contract address
//@param dstToken destination token contract address
//@param srcDestination address to send swapped tokens to
//@param amount amount of source tokens to be swapped
//@param minReturnAmount Minimum destination token amount expected out of this swap
//@param guaranteedAmount max number of tokens in swap outcome. will be sent to destAddress

19 / 23 Chainsulting Audit Report © 2020

struct SwapDescription {
 IERC20 srcToken;
 IERC20 dstToken;
 address srcDestination;
 uint256 amount;
 uint256 minReturnAmount;
 uint256 guaranteedAmount;
 uint256 flags;
 address referrer;
 bytes permit;
 }

@@
// @dev Get the initial gas amount. The intention here is to record the gas used in this function call. This gas used will be used for CHI
calculations.
uint256 initialGas = gasleft();

require(desc.minReturnAmount > 0, "Min return should not be 0");

@@ function swap

returnAmount = desc.dstToken.uniBalanceOf(msg.sender).sub(initialDstBalance);

@@ function swap

initialSrcBalance.add(desc.amount).sub(desc.srcToken.uniBalanceOf(msg.sender));

@@ function swap

returnAmount = desc.dstToken.uniBalanceOf(msg.sender).sub(initialDstBalance);

20 / 23 Chainsulting Audit Report © 2020

@@ function _claim

 }
token.safeTransferFrom(msg.sender, dst, amount);

}

Result:
The implementation of this functions consider all security checks to initiate a swap where the user spends most amount of srcToken
and receives at least minReturnAmount of dstToken, and makes sure the swap executes as expected.

5.3.3 Function: Rescue Funds

Resources: NA
Code:
function rescueFunds(IERC20 token, uint256 amount) external onlyOwner {
 token.uniTransfer(msg.sender, amount);
 }

Result: Calling this function can rescue funds, if they stuck.

21 / 23 Chainsulting Audit Report © 2020

5.3.4 Function: Pause

Resources: NA
Code: https://docs.openzeppelin.com/contracts/3.x/api/utils#Pausable
 function pause() external onlyOwner {
 _pause();
 }

Result:
Calling this function by the contract owner can pause the contract and is needed in case of emergency, such as massive miss use of
the service, future regulation, future vulnerabilities, outages of connected services such as Uniswap.

22 / 23 Chainsulting Audit Report © 2020

6. Executive Summary

The smart contract is written as simple as possible and also not overloaded with unnecessary functions, these is greatly benefiting the
security of the contract. It correctly implemented widely-used and reviewed contracts from OpenZeppelin and for safe mathematical
operations. The main goal of the audit was to verify the claims regarding the security of the smart contract (see the Scope of work
section). According to the code, the implementation of this functions consider all security checks for a safe approval to initiate a swap
where the user spends most amount of srcToken and receives at least minReturnAmount of dstToken, and makes sure the swap
executes as expected. Both claims appear valid. During the audit, no critical, medium or minor issues were found after the manual and
automated security testing. It is recommended to include natspec documentation and follow the doxygen style including @author,
@title, @notice, @dev, @param, @return and make it easier to review and understand your smart contract.

23 / 23 Chainsulting Audit Report © 2020

7. Deployed Smart Contract

Deployed OneInchExchange (approved)

https://etherscan.io/address/0x111111125434b319222cdbf8c261674adb56f3ae#code

